top of page
Якорь 1
A.A. Shchur, T.V. Matveeva, A.V. Bochkarev
Geographic Information System for the forecast mapping of gas hydrate-bearing areas
DOI 10.31087/0016-7894-2021-3-85-94

GIS technologies are an efficient tool for mapping gas hydrate bearing water areas and calculating the acreage and volume of the gas hydrate stability zone. These calculations are useful in resource assessment of methane amount in gas hydrates and prediction of engineering-geological hazards responding to hydrate decomposition into gas and water in the course of offshore well construction. This predictive mapping requires processing of large datasets, a regular grid, and mathematical computing. State-of-the-art technologies allow successful meeting these challenges and optimising cumbersome calculations and labour-intensive mapping. By the example of the Arctic Ocean water area, the authors present the results of the successful use of the ArcGIS software package in data preparation, hydrate-bearing water areas mapping, and calculation of acreage and volume of gas hydrate stability zone.

Key words: gas hydrate stability zone; gas hydrate-bearing water areas; forecast mapping; Geographic Information System.

For citation: Shchur A.A., Matveeva T.V., Bochkarev A.V. Geographic Information System for the forecast mapping of gas hydrate-bearing areas. Geologiya nefti i gaza. 2021;(3):85–94. DOI: 10.31087/0016-7894-2021-3-85-94. In Russ.

 

References

1. Matveeva T.V., Semenova A.A., Shchur N.A., Logvina E.A., Nazarova O.V. Perspektivy gazogidratonosnosti Chukotskogo moray [Prospects of gas hydrate presence in the chukchi sea]. Zapiski Gornogo instituta. 2017;226:387–396. DOI: 10.25515/PMI.2017.4.387. In Russ.
2. Matveeva T.V. Obrazovanie gidratov uglevodorodnykh gazov v subakval’nykh obstanovkakh [Formation of hydrocarbon gas hydrates in subaqueous settings.]. In: L.I. Lobkovskii, G.A. Cherkashev eds. Mirovoi ocean T. 3: Tverdye poleznye iskopaemye i gazovye gidraty v okeane. Moscow: Nauchnyi mir; 2018. pp. 586–697. In Russ.
3. Solov’ev V.A. Global’nye otsenki kolichestva gaza v submarinnykh skopleniyakh gazovykh gidratov [Global estimates of gas amount in subsea gas hydrate accumulations]. Geologiya i Geofizika.,2002;43(7);648–661. In Russ.
4. Solov’ev V.A. Arkticheskie morya Rossii. Usloviya gazogidratonosnosti i potentsial’no gidratonosnye akvatorii [Russian Arctic seas. Conditions for gas hydrate bearing capacity and potentially hydrate bearing water areas]. In: M.N. Alekseeva, ed. Geologiya i poleznye iskopaemye shel’fov Rossii (atlas). Moscow: Nauchnyi Mir; 2004. 108 p. In Russ.
5. Semenova A., Nazarova O., Matveeva T., Shchur N. Prediction of gas hydrate formation in the shallow Arctic seas offshore Russia using measured gas composition // Abstracts from 9th International Conference on Gas Hydrates (ICGH9), June 25-30, 2017. Denver: Colorado School of Mines; 2017. 3 p.
6. Semenova A.A., Matveeva T.V., Shchur N.A. Mapping of Gas Hydrate Stability Zone within the Arctic seas offshore Russia. In: Abstracts from the 13th International Conference on Gas in Marine Sediments (GIMS13) (19–22 September 2016, Tromse). Tromse: The Gateway to the Arctic; 2016.
7. Matveeva T.V., Semenova A.A., Shchur N.A. Inferred permafrost-associated gas hydrate stability zone on the Siberian arctic shelf. Geosciences. Special Issue: Gas Emissions and Crater Formation in Arctic. In press.
8. Semenova A.A., Matveeva T.V., Shchur N.A. Metodicheskie aspekty modelirovaniya reliktovoi subakval’noi merzloty i zony stabil’nosti gazovykh gidratov na shel’fe arkticheskikh morei [Methodological aspects of modeling relict subaquatic permafrost and zones of gas hydrates stability on the shelf of the Arctic seas]. Kriosfera Zemli. In press.
9. Natsional’noe upravlenie okeanologicheskimi i atmosfernymi issledovaniyami [National Oceanological and Atmospheric Administration]. NOAA. Available at: https://www.ngdc.noaa.gov/ (accessed 16.07.2020). In Russ.
10. Fizicheskie modeli Morskoi sluzhby [Physical models by Maritime Service] Kopernikus (Copernicus Marine Environment Monitoring Service, CMEMS Available at: http://marine.copernicus.eu/services-portfolio/access-to-products/?option=com_csw&task=results&goback=1 accessed 16.07.2020). In Russ.
11. Global Ocean Physics Reanalysis. Available at: https://resources.marine.copernicus.eu/?option=com_csw&view=details&product_id=GLOBAL_REANALYSIS_PHY_001_030 (accessed 16.07.2020).
12. Global’naya Baza Dannykh Teplovogo Potoka [Global Heat Flow Database]. Available at: http://heatflow.org/ (accessed 16.07.2020). In Russ.
13. Lachenbruch A.H., Marshall B.V., Ruppel C.D. Post-expedition report for USGS T-3 Ice island heat flow measurements in the High Arctic ocean. U.S. Geological Survey data release. 2019. DOI:10.5066/P91XQ3IS.
14. O’Regan M., Pedro P., Stranne C., Jakobsson M., Koshurnikov A. Surface heat flow measurements from the East Siberian continental slope and southern Lomonosov Ridge, Arctic Ocean. Geochemistry Geophysics Geosystems. 2016;17(5):1608–1622. DOI:10.1002/2016GC006284.
15. O’Regan M., Moran K. Deep water methane hydrates in the Arctic Ocean: Reassessing the significance of a shallow BSR on the Lomonosov Ridge. Journal of Geophysical Research. 2010;115(B05102). DOI:10.1029/2009JB006820.

16. Global’naya model’ rel’efa dna Zemnoi poverkhnosti GEBCO 2020 [GEBCO 2020 global bathymetric model]. Available at: https://www.gebco.net/data_and_products/gridded_bathymetry_data/ (accessed 16.07.2020). In Russ.
17. Geomorfologicheskaya karta Severnogo Ledovitogo okeana masshtaba 1:5 000 000 [Geomorphological map, the Arctic Ocean, 1:5,000,000 scale]. In: Otchet o rezul’tatakh tematicheskikh i opytno-metodicheskikh rabot, svyazannykh s geologicheskim izucheniem nedr, vypolnennykh za 2018 god. Prilozhenie № 13. St. Petersburg: VNIIOkeangeologiya; 2018. In Russ.
18. Sloan E.D., Carolyn A.K. Clathrate of Hydrates of Natural Gases. New-York, Dekker; 1998. 641 p. DOI:10.1201/9781420008494.
19. Poselov V.A., Zholondz S.M., Trukhalev A.I., Kos’ko M.K., Poselova L.G., Butsenko V.V., Pavlenkin A.D., Verba V.V., Kim B.I. Karta moshchnosti osadochnogo chekhla Severnogo Ledovitogo okeana [Map of thickness of the sedimentary cover of the Arctic Ocean]. In: Geologo-geofizicheskie kharakteristiki litosfery Arkticheskogo regiona. St. Petersburg: VNIIOkeangeologiya; 2012. V. 233. Issue 8. pp. 8–14. In Russ.

A.A. Shchur
Researcher
VNIIOkeangeologia,
1 Angliysky Avenue, Saint-Petersburg, 190121, Russia
e-mail: vniio_semenova@mail.ru

 

T.V. Matveeva
Candidate of Geological and Mineralogical Sciences,
Head of Laboratory, Academic Secretary
VNIIOkeangeologia,
1, Angliysky Avenue, Saint-Petersburg, 190121, Russia
e-mail: tv_matveeva@mail.ru

 

A.V. Bochkarev
Lead Engineer Researcher
VNIIOkeangeologia,
1, Angliysky Avenue, Saint-Petersburg, 190121, Russia
e-mail: bochkarev_alex@inbox.ru

bottom of page