top of page
Якорь 1
M.A. Lur’e
 
Transformation of deep-lying abiogenic fluids to petroleum substance
DOI 10.31087/0016-7894-2019-5-73-82

Different aspects of the concept of deep abiogenic oil generation are compared. Based on the idea that deep-lying high-temperature fluids are a natural catalytic system containing the active components such as sulphur and metals in the processes of hydrocarbons polymerization and polycondensation, it follows that the processes in this mixture can result in formation of an petroleum substance containing, along with hydrocarbons, organic sulphur and metal-containing structures. The pattern of this catalytic system is quite consistent with the real oils’ parameters. The results of study of oil sulphur and carbon isotopy and their fractions do not contradict the vision of oil substance formation in the process of deep fluid evolution. It is revealed that classification of certain petroleum hydrocarbons only as structures having biological origin is improper. Application of thermodynamic models confirms the possibility of petroleum substance existence at different depths. At the same time, it should be taken into account that chemical processes in geospheres occur in non-equilibrium mode, and petroleum fluid is an open system remote from the thermodynamic equilibrium. Therefore, for a more comprehensive study of oil genesis, it will be reasonable to use the concept of synergetics — a universal interdisciplinary field of science explaining formation and self-organization of systems that are not in thermodynamic equilibrium. It is revealed that the possibility of synergetic processes (cooperative influence of sulphur and metals on hydrocarbons) in the deep-lying fluid causes fractality (self-similarity) of petroleum systems at different spatial levels. Involvement of deep methane having a strong greenhouse effect, sulphur, and metals characterized by toxic effects on biosystems, in oil genesis contributes to occurrence of environmental conditions favourable for life. Thus, oil not only provides for people's resource and energy needs, but oil genesis also appears to have an environmental function.

Key words: genesis of abiogenic oil; composition of deep fluids; key reactions of oil formation.

For citation: Lur’e М.А. Transformation of deep-lying abiogenic fluids to petroleum oil substance. Geologiya nefti i gaza. 2019;(5):73–82. DOI: 10.31087/0016-7894-2019-5-73-82.

References

1. Rudenko A.P., Kulakova I.I. Polycondensation of carbon-containing molecules. Problems of fossil fuel generation and carbon cycles in nature [Polikondensatsiya uglerodsoderzhashchikh molekul. Problemy obrazovaniya goryuchikh iskopaemykh i krugovorota ugleroda v prirode]. Vestnik Moskovskogo Universiteta. Seriya 2: Khimiya. 1996;37(6):544–567.
2. Lur’e M.A. Is the Fischer – Tropsch process possible in a geologic medium? Geochemistry International. 2014;52(12):1084–1086. DOI:10.1134/S0016702914120052.
3. Letnikov F.A. Superdeep fluid systems of Earth and problem of ore genesis. Geologiya rudnykh mestorozhdenii. 2001;43(4):291–307.
4. Kutcherov V.G., Kolesnikov A.Y., Dyuzheva T.I., Kulikova L.F., Nikolaev N.N., Sazanova O.A., Braghkin V.V. Synthesis of complex hydrocarbon systems at temperatures and pressures corresponding to the Earth's upper mantle conditions. Doklady Physical Chemistry. 2010;433(1):132–135. DOI: 10.1134/S0012501610070079
5. Lur’e M.A., Shmidt F.K. Oil. Discussion of origin. Sulfur- and metal content as genetic characteristics. Saarbrucken, Germany: Lap Lambert Academic Publishing; 2013. 216 p.
6. Kholodov V.N. Sedimentary ore genesis and metalgeny of vanadium. Moscow: Science; 1973. 275 p.
7. Khadzhiev S.N., Shpirt M.Ya. Microelements in oils and products of their processing. Moscow: Nauka; 2012. 222 p.
8. Voitov G.I. Chemism and scale of the modern natural gas flow in different geostructural zones of the Earth [Khimizm i masshtaby sovremennogo potoka prirodnykh gazov v razlichnykh geostrukturnykh zonakh Zemli]. Zhurnal vsesoyuznogo khimicheskogo obshchestva im. D.I. Mendeleeva. 1986;31(5):533–540.
9. Eigenson A.S. About quantitative research of the formation of technogenic and natural hydrocarbon systems using methods of mathematical modeling. Khimiya i tekhnologiya topliv i masel. 1990;(12):19–25.
10. Seyful-Mulyukov R.B. Oil and gas formation. Theory and practical aspects. Geologiya nefti i gaza. 2017;(6):89–96.
11. Chukin G.D., Alatortseva E.I., Leontieva S.A. Origin of oil: a new view. Neftepererabotka i neftekhimiya. 2016;(7):17–22.
12. Eigenson A.S. About opposition of two concepts of oil-and-gas formation. Khimiya i tekhnologiya topliv i masel. 1998;(3):3–5
13. Eigenson A.S., Sheikh-Ali D.M. Regularities of the component-fractional and chemical composition of oils. Khimiya i tekhnologiya topliv i masel. 1988;(10):29–34.
14. Ivanov K.S., Fedorov Yu.N., Petrov L.A., Shishmakov A.B. The nature of biomarkers in oils. Doklady Earth Sciences. 2010;32(1):626–630. DOI: 10.1134/S1028334X1005017X
15. Lur'e M.A. Features of isotopic composition of carbon and sulfur in oil-and-gas and other natural systems. Izvestiya VUZov. Neft' i gaz. 2018;(5):108–115. DOI: 0445-0108-2018-5-108-115
16. Pikovsky Yu.I. The 21th century's first All-Russian scientific conference on oil and gas origin. Otechestvennaya geologiya. 2004;(2):91–98.
17. Chekalyuk E.B. Problem of oil synthesis at great depths [K probleme sinteza nefti na bol'shikh glubinakh]. Zhurnal vsesoyuznogo khimicheskogo obshchestva im. D.I. Mendeleeva. 1986;31(5):556–562.
18. Zubkov B.C., Stepanov A.N., Karpov I.K., Bychinskii V.A. Thermodynamic model of C-H system under high temperature and high pressure [Termodinamicheskaya model' sistemy S–N v usloviyakh vysokikh temperatur i davlenii]. Geokhimiya. 1998;(1):95–101.

19. Zubkov B.C., Bychinskii V.A., Karpov I.K. Thermodynamic stability of mantle hydrocarbons [Termodinamicheskaya ustoichivost' mantiinykh uglevodorodov]. Geologiya nefti i gaza. 2000;(2):59–63.
20. Kochetkov O.S, Alisievich L.N., Gaideek V.I., Yudin V.M. Ways of oil and gas field formation [O putyakh formirovaniya mestorozhdenii nefti i gaza]. Geologiya nefti i gaza. 2000;(5):44–49.
21. Barelko V.V., Safonov O.G., Bykova N.V. Bykov L.A., Dorokhov V.G., Kuznetsov M.V. Catalytic transformation of fluids [Kataliticheskie prevrashcheniya flyuidov]. Vestnik Rossiiskoi akademii nauk = Herald of the Russian Academy of Sciences. 2016;86(4):336–341. DOI: 10.7868/S0869587316040046.
22. Yarmolyuk V.V., Kovalenko V.I., Naumov V.B. Flows of volatile components in upper shells of Earth as a reflection of deep geodynamic processes. In: Deep magmatism, its sources and their connection with plume processes. N.V. Vladykin, ed. Irkutsk, Ulan-Ude: SB RAS; 2004. pp. 5–34.
23. Lur’e M.A. About the reasons of geochemical differences of oil and gas systems. Geologiya nefti i gaza. 2015;(3):69–75.
24. Yashchenko I.G., Polishchuk Yu.M. Analysis of spatial distribution of oils and changes of their physical-chemical properties. Geologiya nefti i gaza. 2013;(4):57–64.
25. Glagoleva O.F. Petroleum processing technology. Part I. Crude oil distillation [Tekhnologiya pererabotki nefti. Ch. I. Pervichnaya pererabotka nefti]. Moscow: Khimiya; 2006. 399 p.
26. Mukhametshin R.Z., Punanova S.A. Geochemical features of oils of Ural-Povolzhie in view of field formation conditions. Geologiya nefti i gaza. 2011;(4):74–83.
27. Letnikov F.A. Degassing of Earth as global process of self-organization. In: Degazatsiya Zemli: geodinamika, geoflyuidy, neft' i gaz: mat-ly mezhdun. konferentsii. Moscow: GEOS; 2002. pp. 6–7.
28. Sulphur reactions with organic compounds [Reaktsii sery s organicheskimi soedineniyami]. In: M.G. Voronkova, ed. Novosibirsk: Nauka; 1979. 364 p.

29. Tumanov V.E., Denisov E.T. Estimation of S–H and C–H Bond Dissociation Energies in Organic Sulfur Compounds. Petroleum Chemistry. 2003;43(6):368–374.
30. Litvinov V.P. Cascade heterocyclization in synthesis of thiophene derivatives and its condensed analogs. Rossiiskii khimicheskii zhurnal. 2005;49(6):11–20.
31. Kemalov A.F. Use of elemental sulphur in road construction [Ispol'zovanie elementnoi sery v dorozhnom stroitel'stve]. In: Khimiya nefti i gaza: materialy 5-i mezhdunarodnoi konferentsii. Tomsk: SO RAN; 2003. pp. 511–513.
32. Gureev A.A., Larina N.M., Abi-Fadel' Yu., Fedorov A.A. Modification of road bitumen properties using tar sulphurizing [Modifikatsiya svoistv dorozhnykh bitumov obrabotkoi gudrona seroi]. Khimiya i tekhnologiya topliv i masel. 2002;(5):32–34.
33. Telyashev I.R., Davletshin A.R., Obukhova S.A. Interaction of tar and elemental sulphur [Vzaimodeistvie gudrona s elementnoi seroi]. In: Khimiya nefti i gaza: materialy 4-i mezhdunarodnoi konferentsii. Tomsk: SO RAN; 2000. T. 1. pp. 158–160.
34. Obolentsev R.D., Aivazov B.V., Titova K.V. Role of elemental sulphur in formation of hydrogen sulphide when heating oil [O roli elementnoi sery v obrazovanii serovodoroda pri nagrevanii neftei]. In: Khimii sera- i azotorganicheskikh soedinenii, soderzhashchikhsya v neftyakh i nefteproduktakh: materialy 4-i nauchnoi sessii. Ufa: Bashkirskii filial AN SSSR; 1958. pp. 65–66.
35. Krylov O.V. Heterogeneous catalysis. Moscow: Akademkniga; 2004. 679 p.
36. Startsev A.N., Kruglyakova O.V., Ruzankin S.F., Bulgakov N.N., Chesalov Yu.A., Kravtsov E.A., Zheivot V.I., Larina T.V., Paukshtis E.A. Peculiarities of low-temperature catalytic decomposition of hydrogen sulfide. Zhurnal fizicheskoi khimii. 2014;88(6):943–956. DOI: 10.7868/S004445371406034X.
37. Janssens J.P., van Langeveld A.D., Moulijn J.A. Characterization of alumina and silica-supported vanadium sulphide catalysts and their performance in hydrotreating reaction. Applied Catalysis A: General. 1999;179(1–2):229–239. DOI:10.1016/S0926-860X(98)00319-6
38. Shpirt M.Ya., Punanova S.A. Comparative assessment of microelement composition of coals, oils and shales. Khimiya tverdogo topliva. 2007;(5):15–29.
39. Nukenov D.N., Punanova S.A. Metal in naphtides and prospects of vanadium extraction from oil of Buzachinsky Arch, Turansky Platform [Metally v naftidakh i perspektivy dobychi vanadiya v neftyakh Buzachinskogo svoda Turanskoi platformy]. In: Sovremennye problemy geologii nefti i gaza. Moscow: Nauchnyi mir; 2001. pp. 347–353.
40. Agalakov S.E., Kurchikov A.R., Baburin A.N. Geologic and geophysical prerequisites for the existence of gas hydrates in the Turonian deposits of the East Messoyakha deposit. Geologiya i geofizika = Russian Geology and Geophysics. 2001;42(11–12):1785–1791.
41. Eremenko N.A., Chilingar G.V. Oil and gas geology between two ages [Geologiya nefti i gaza na rubezhe vekov]. Moscow: Nauka; 1996. 176 p.
42. Marakushev A.A. Migratory capacity and geochemical classification of metals [Migratsionnaya sposobnost' i geokhimicheskaya sistematika metallov]. Vestnik Akademii nauk SSSR. 1972;(6 S):46–51.
43. Goncharov I.V. Oil geochemistry in Western Siberia [Geokhimiya neftei Zapadnoi Sibiri]. Moscow: Nedra; 1987. 180 p.
44. Lur’e M.A. Oil genesis as a manifestation of ecological functions of abiotic spheres of Earth. Geoecologiya. 2017;(6):8–14.

M.A. Lur’e   Scopus

Research Institute of Oil and Coal Chemical Synthesis of Irkutsk State University, Irkutsk, Russia;

miklur@rambler.ru;

bottom of page