top of page
Якорь 1
N.K. Fortunatova, V.A. Spiridonov
Density modelling of sedimentary cover, upper part of the basement using GIS INTEGRO technologies: Sredny and Nizhnevolzhsky Petroleum Regions and neighbouring areas
DOI 10.31087/0016-7894-2021-5-75-91

The paper discussed density modelling of the Sredne-Nizhnevolzhsky Petroleum Region and its neighbouring areas on the basis of the GIS INTEGRO technologies. Integrated approach to density modelling comprising the sequential realization of two models as follows: Earth’s crust and upper part of the mantle up to the depth of 70 km; sedimentary cover and upper part of the crystalline Basement up to the depth of 10 km. Gravity response from the first model matches the observed gravity field. During the course of this model creation, the main structural constituents of consolidated crust and sedimentary cover, which the meaningful jump of physical properties (density, velocity, magnetisation, etc.) occurs at, were revised. Gravity field reduction conducted on the basis of the first model allowed selecting densities for the model of sedimentary cover. The authors show that the range of the reduced gravity field over the Sredne-Nizhnevolzhsky Petroleum Region is one and a half times greater than the observed range. In the sections of the density model of sedimentary cover, density distribution was compared with the spatial position of hydrocarbon field known in the region. Structural and density-related criteria, which can be used as complementary in regional prediction of hydrocarbons are determined.

Key words: gravimetry; 3D density modelling; gravity field reduction; structural model of sedimentary cover; further criteria for regional hydrocarbon forecasts.

For citation: Fortunatova N.K., Spiridonov V.A. Density modelling of sedimentary cover, upper part of the basement using GIS INTEGRO technologies: Sredny and Nizhnevolzhsky Petroleum Regions and neighbouring areas. Geologiya nefti i gaza. 2021;(5):75–91. DOI: 10.31087/0016-7894-2021-5-75-71. In Russ.

 

References

1. Bogdanova S.V. Zemnaya kora Russkoi platformy [Earth’s crust of Russian Platform]. In: Trudy Geol. In-t AN SSSR. Moscow: Nauka; 1986. Issue 408. 224 p. In Russ.
2. Maslyaev G.A., Nevolin N.V., Fedorov D.L. Prikaspiiskaya vpadina. Strukturnaya karta poverkhnosti fundamenta [Caspian depression. Depth map of the Basement surface]. Moscow: VNII Zarubezhgeologiya; 1994. In Russ.
3. Rikhter Ya.A. Geodinamicheskaya model’ formirovaniya Prikaspiiskoi vpadiny: perekhod okrainnykh riftogennykh vpadin v glubokie osadochnye basseiny [Geodynamic model of the Caspian depression formation: transition of marginal riftogenic depressions into deep sedimentary basins]. Nedra Povolzh’ya i Prikaspiya. 2010;(64): 3–18. In Russ.
4. Shein V.S., Fortunatova N.K., Alferenok A.V., Dolmatova I.V., Elagina Ya.E., Kalamkarov S.L., Knipper A.A., Petrov A.I., Sobornov K.O. Geodynamic evolution and tectonic zoning of East-European platform. Geologiya nefti i gaza. 2013;(5):11–27. In Russ.
5. Antipov M.P., Bykadorov V.A., Volozh Yu.A., Leonov Yu.G. Problems of origin and evolution of Pre-Caspian depression. Geologiya nefti i gaza. 2009;(3):11–19. In Russ.
6. Trofimov V.A. Glubinnye regional’nye seismorazvedochnye issledovaniya MOGT neftegazonosnykh territorii [Deep regional seismic CDP studies in oil and gas bearing territories]. Мoscow: GEOS; 2014. 202 p. In Russ.
7. Kolodyazhnyi S.Yu. The Structure and Evolution of the Sura–Kama Strike Slip Zone in the Cainozoic (the Volga-Ural Anteclise of the East European Platform). Geotectonics. 2015;(4):30–53. DOI: 10.7868/S0016853X15040049. In Russ.
8. Kopp M.L., Verzhbitskii V.E., Kolesnichenko A.A., Tveritinova T.Yu., Vasil’ev N.Yu., Korchemagin V.A., Makarova N.V., Mostryukov A.O., Ioffe A.I. Cenozoic stress field in the east of the Russian Plate, Southern And Middle Urals: methodical, theoretical and applied aspects [Cenozoic stress in the east of Russian Plate, Southern and Middle Urals: methodological, theoretical, and engineering aspects]. Мoscow: GEOS; 2014. 88 p. In Russ.
9. Spiridonov V.A., Pimanova N.N. Methodological and technological aspects of exeption of the gravitational effect of the lower part of the earth’s crust in study of sedimentary cover of oil and gas-bearing areas. Geoinformatika. 2020;(3):38–45. DOI: 10.47148/1609-364X-2020-3-38-45. In Russ.

10. Spiridonov V.A., Pimanova N.N., Finkel’shtein M.Ya. Technology for constructing a 3D density model of the earth’s crust in the INTEGRO GIS. Geoinformatika. 2020;(4):38–51.  DOI: 10.47148/1609-364X-2020-4-38-51. In Russ. 
11. Egorkin A.V., Raznikova M.I. Prikaspiiskaya vpadina [Caspian depression]. In: Seismicheskie modeli litosfery osnovnykh geostruktur territorii SSSR. Мoscow; 1980. pp. 90–95. In Russ.
12. Sukhorukov V.I., Yatskevich S.V., Pisarenko V.Yu., Pisarenko Yu.A., Andreev G.N. Sedimentatsionno-formatsionnye osobennosti formirovaniya rifeiskikh otlozhenii Pachelmsko-Saratovskogo avlakogena [Sedimentation and formation features of the Riphean series within the Pachelmsky-Saratovsky aulacogen]. Nedra Povolzh’ya i Prikaspiya. 2016;(86):18–43. In Russ.

Natalya K. Fortunatova
Doctor of Geological and Mineralogical Sciences,
Deputy Director General
All-Russian Research
Geological Oil Institute,
36, Shosse Entuziastov, Moscow, 105118, Russia
e-mail: fortunatova@vnigni.ru

 

Viktor A. Spiridonov  iD
Candidate of Technical Sciences, Head of Sector
All-Russian Research
Geological Oil Institute,
8, Varshavskoe shosse, Moscow, 117105, Russia
e-mail: victor@geosys.ru

bottom of page